If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-6t-40=0
a = 3; b = -6; c = -40;
Δ = b2-4ac
Δ = -62-4·3·(-40)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{129}}{2*3}=\frac{6-2\sqrt{129}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{129}}{2*3}=\frac{6+2\sqrt{129}}{6} $
| 8-2(w+4)=0 | | 5(3x+5=4x+5 | | 6(3h+5)=282 | | 34−4q=–46 | | -4(2x+9)=12 | | 19.50t=117.00 | | (3x+20)=20 | | 1/3−2/9m=15+m | | 2x+3=-3(x+1) | | 13(2v+13)=299 | | 3+11/2p=-14/5 | | 75-3.5y-4y=4y+675−3.5y−4y=4y+6 | | 5(z−69)=90 | | x+84=4x-14 | | 42=(3m)+9 | | (5(y-7))÷2=10 | | 1/3/5(t-6=0.4 | | a/6+29=32 | | 5z+11=51 | | 9(4r-9)=243 | | 9x+2+x=180 | | 0.3(r+2)=–0.1(–2r–4) | | a=25,000(1.05)^5 | | 51=3(n+6) | | 182=91-w | | 5(x+1.50)=27.50. | | 49=(2m)+13 | | 4x-14=x+84 | | -5+9/11r=13 | | 4s=160 | | 23+9x+2=90 | | 2(5f+7)=84 |